These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Application of a molecular sensory science approach to alkalized cocoa (Theobroma cacao): structure determination and sensory activity of nonenzymatically C-glycosylated flavan-3-ols.
    Author: Stark T, Hofmann T.
    Journal: J Agric Food Chem; 2006 Dec 13; 54(25):9510-21. PubMed ID: 17147440.
    Abstract:
    Application of comparative taste dilution analyses on nonalkalized and alkalized cocoa powder revealed the detection of a velvety, smoothly astringent tasting fraction, which was predominantly present in the alkalized sample. LC-MS/MS analysis, 1D- and 2D-NMR, and CD spectroscopy as well as model alkalization reactions led to the unequivocal identification of the velvety, smoothly astringent molecules as a series of catechin- and epicatechin-C-glycopyranosides. Besides the previously reported (-)-epicatechin-8-C-beta-D-galactopyranoside, additional flavan-3-ol-C-glycosides, namely, (-)-epicatechin-8-C-beta-D-glucopyranoside, (-)-catechin-8-C-beta-D-glucopyranoside, (-)-catechin-6-C-beta-D-glucopyranoside, (-)-epicatechin-6-C-beta-D-glucopyranoside, (-)-catechin-8-C-beta-D-galactopyranoside, (-)-catechin-6-C-beta-D-galactopyranoside, (-)-catechin-6-C,8-C-beta-D-diglucopyranoside, (-)-epicatechin-6-C,8-C-beta-D-digalactopyranoside, (-)-catechin-6-C,8-C-beta-D-digalactopyranoside, and epicatechin-6-C,8-C-beta-D-diglucopyranoside, were identified for the first time in cocoa. Most surprisingly, these phenol glycoconjugates were demonstrated by model experiments to be formed via a novel nonenzymatic C-glycosylation of flavan-3-ols. Using the recently developed half-tongue test, human recognition thresholds for the astringent and mouth-drying oral sensation were determined to be between 1.1 and 99.5 micro mol/L (water) depending on the sugar and the intramolecular binding position as well as the aglycone.
    [Abstract] [Full Text] [Related] [New Search]