These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. Author: Fiser R, Masín J, Basler M, Krusek J, Spuláková V, Konopásek I, Sebo P. Journal: J Biol Chem; 2007 Feb 02; 282(5):2808-20. PubMed ID: 17148436. Abstract: The Bordetella adenylate cyclase toxin-hemolysin (CyaA) targets phagocytes expressing the alpha(M)beta2 integrin (CD11b/CD18), permeabilizes their membranes by forming small cation-selective pores, and delivers into cells a calmodulin-activated adenylate cyclase (AC) enzyme that dissipates cytosolic ATP into cAMP. We describe here a third activity of CyaA that yields elevation of cytosolic calcium concentration ([Ca2+]i) in target cells. The CyaA-mediated [Ca2+]i increase in CD11b+ J774A.1 monocytes was inhibited by extracellular La3+ ions but not by nifedipine, SK&F 96365, flunarizine, 2-aminoethyl diphenylborinate, or thapsigargin, suggesting that influx of Ca2+ into cells was not because of receptor signaling or opening of conventional calcium channels by cAMP. Compared with intact CyaA, a CyaA-AC- toxoid unable to generate cAMP promoted a faster, albeit transient, elevation of [Ca2+]i. This was not because of cell permeabilization by the CyaA hemolysin pores, because a mutant exhibiting a strongly enhanced pore-forming activity (CyaA-E509K/E516K), but unable to deliver the AC domain into cells, was also unable to elicit a [Ca2+]i increase. Further mutations interfering with AC translocation into cells, such as proline substitutions of glutamate residues 509 or 570 or deletion of the AC domain as such, reduced or ablated the [Ca2+]i-elevating capacity of CyaA. Moreover, structural alterations within the AC domain, because of insertion of various oligopeptides, differently modulated the kinetics and extent of Ca2+ influx elicited by the respective AC- toxoids. Hence, the translocating AC polypeptide itself appears to participate in formation of a novel type of membrane path for calcium ions, contributing to action of CyaA in an unexpected manner.[Abstract] [Full Text] [Related] [New Search]