These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of substitution on 9-(3-bromo-4-fluorophenyl)-5,9-dihydro-3H,4H-2,6-dioxa-4- azacyclopenta[b]naphthalene-1,8-dione, a dihydropyridine ATP-sensitive potassium channel opener.
    Author: Altenbach RJ, Brune ME, Buckner SA, Coghlan MJ, Daza AV, Fabiyi A, Gopalakrishnan M, Henry RF, Khilevich A, Kort ME, Milicic I, Scott VE, Smith JC, Whiteaker KL, Carroll WA.
    Journal: J Med Chem; 2006 Nov 16; 49(23):6869-87. PubMed ID: 17154517.
    Abstract:
    Structure-activity relationships were investigated on the tricyclic dihydropyridine (DHP) KATP openers 9-(3-bromo-4-fluorophenyl)-5,9-dihydro-3H,4H-2,6-dioxa-4-azacyclopenta[b]naphthalene-1,8-dione (6) and 10-(3-bromo-4-fluorophenyl)-9,10-dihydro-1H,8H-2,7-dioxa-9-azaanthracene-4,5-dione (65). Substitution off the core of the DHP, absolute stereochemistry, and aromatic substitution were evaluated for KATP channel activity using Ltk- cells stably transfected with the Kir6.2/SUR2B exon 17- splice variant and in an electrically stimulated pig bladder strip assay. A select group of compounds was evaluated for in vitro inhibition of spontaneous bladder contractions. Several compounds were found to have the unique characteristic of partial efficacy in both the cell-based and electrically stimulated bladder strip assays but full efficacy in inhibiting spontaneous bladder strip contractions. For compound 23b, this profile was mirrored in vivo where it was fully efficacious in inhibiting spontaneous myogenic bladder contractions but only partially able to reduce neurogenically mediated reflex bladder contractions.
    [Abstract] [Full Text] [Related] [New Search]