These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification, identification, characterization, and cDNA cloning of a high molecular weight extracellular superoxide dismutase of hamster that transiently increases in plasma during arousal from hibernation.
    Author: Akita K, Hanaya T, Arai S, Ohta T, Okamoto I, Fukuda S.
    Journal: Comp Biochem Physiol A Mol Integr Physiol; 2007 Feb; 146(2):223-32. PubMed ID: 17157046.
    Abstract:
    We previously studied antioxidant profiles in the plasma of hibernating Syrian hamsters and found a transient increase of a superoxide radical-scavenging activity during the arousal phase. In this report, we purified and identified the high molecular weight superoxide dismutase (SOD)-like factor from the plasma of arousing hamsters. The cyanide-sensitive 240 kDa SOD-like factor showed a significant homology to mammalian extracellular SOD (EC-SOD) reported, although the molecular mass of EC-SOD was 135 kDa. The cDNA cloning revealed that the 240 kDa SOD-like factor was identical to the hamster ortholog of EC-SOD. It consisted of 245 amino acid residues including a signal sequence of 20 amino acid residues. Five cysteine residues that would participate in inner- and inter-subunit bonds were well conserved among species. Interestingly, there were four potential N-glycosylation sites in hamster EC-SOD, whereas there is only one site in other species. The amino acid sequence analysis indicated that three of the four sites were modified. These results suggest that the anomalistically high molecular weight of hamster EC-SOD is ascribed, at least in part, to the addition of extra sugar chains. Furthermore, results obtained here also propose the involvement of EC-SOD in the antioxidative defense of hibernating hamsters.
    [Abstract] [Full Text] [Related] [New Search]