These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A SAS macro for parametric and semiparametric mixture cure models.
    Author: Corbière F, Joly P.
    Journal: Comput Methods Programs Biomed; 2007 Feb; 85(2):173-80. PubMed ID: 17157948.
    Abstract:
    Cure models have been developed to analyze failure time data with a cured fraction. For such data, standard survival models are usually not appropriate because they do not account for the possibility of cure. Mixture cure models assume that the studied population is a mixture of susceptible individuals, who may experience the event of interest, and non-susceptible individuals that will never experience it. The aim of this paper is to propose a SAS macro to estimate parametric and semiparametric mixture cure models with covariates. The cure fraction can be modelled by various binary regression models. Parametric and semiparametric models can be used to model the survival of uncured individuals. The maximization of the likelihood function is performed using SAS PROC NLMIXED for parametric models and through an EM algorithm for the Cox's proportional hazards mixture cure model. Indications and limitations of the proposed macro are discussed and an example in the field of cancer clinical trials is shown.
    [Abstract] [Full Text] [Related] [New Search]