These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Substrate determinants for RNA editing and editing complex interactions at a site for full-round U insertion. Author: Cifuentes-Rojas C, Pavia P, Hernandez A, Osterwisch D, Puerta C, Cruz-Reyes J. Journal: J Biol Chem; 2007 Feb 16; 282(7):4265-4276. PubMed ID: 17158098. Abstract: Multisubunit RNA editing complexes catalyze uridylate insertion/deletion RNA editing directed by complementary guide RNAs (gRNAs). Editing in trypanosome mitochondria is transcript-specific and developmentally controlled, but the molecular mechanisms of substrate specificity remain unknown. Here we used a minimal A6 pre-mRNA/gRNA substrate to define functional determinants for full-round insertion and editing complex interactions at the editing site 2 (ES2). Editing begins with pre-mRNA cleavage within an internal loop flanked by upstream and downstream duplexes with gRNA. We found that substrate recognition around the internal loop is sequence-independent and that completely artificial duplexes spanning a single helical turn are functional. Furthermore, after our report of cross-linking interactions at the deletion ES1 (35), we show for the first time editing complex contacts at an insertion ES. Our studies using site-specific ribose 2' substitutions defined 2'-hydroxyls within the (a) gRNA loop region and (b) flanking helixes that markedly stimulate both pre-mRNA cleavage and editing complex interactions at ES2. Modification of the downstream helix affected scissile bond specificity. Notably, a single 2'-hydroxyl at ES2 is essential for cleavage but dispensable for editing complex cross-linking. This study provides new insights on substrate recognition during full-round editing, including the relevance of secondary structure and the first functional association of specific (pre-mRNA and gRNA) riboses with both endonuclease cleavage and cross-linking activities of editing complexes at an ES. Importantly, most observed cross-linking interactions are both conserved and relatively stable at ES2 and ES1 in hybrid substrates. However, they were also detected as transient low-stability contacts in a non-edited transcript.[Abstract] [Full Text] [Related] [New Search]