These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alterations of cell adhesion molecules in human glomerular endothelial cells in response to nephritis-associated plasminogen receptor.
    Author: Khan F, Yamakami K, Mahmood J, Li B, Kikuchi T, Kumagai N, Morioka T, Yoshizawa N, Oite T.
    Journal: Nephron Exp Nephrol; 2007; 105(2):e53-64. PubMed ID: 17159372.
    Abstract:
    BACKGROUND: Acute post-streptococcal glomerulonephritis (APSGN) is induced by glomerular deposition of nephritogenic streptococcal antigen-antibody complexes. Recently, a streptococcal antigen, nephritis-associated plasminogen receptor (NAPlr) was purified from ruptured streptococcal cell supernatants (RCS). However, the cellular and molecular mechanisms of NAPlr action on the glomerular vas culature are still unknown. METHODS: Expression of cell adhesion molecules were measured by cellular ELISA (enzyme-linked immunosorbent assay), immunofluorescence microscopy and Western blot analysis. RESULTS: RCS and NAPlr significantly decreased the PECAM-1 expression in human glomerular endothelial cells (HGECs) as compared to that in the control cells. Plasminogen treatment reversed the RCS or NAPlr-induced decrease of PECAM-1 expression and increase of MCP-1 expression. Immunofluorescent microscopy and Western blot analysis also showed that PECAM-1 expression in HGECs was downregulated upon treatment with RCS or NAPlr and this effect was reversed by plasminogen treatment. Furthermore, we found that tumor necrosis factor-alpha production in culture medium of HGECs was increased at the lower level when the culture system was treated with RCS. CONCLUSION: RCS and NAPlr modulated PECAM-1 expression and MCP-1 production in HGECs, indicating the involvement of NAPlr in inflammatory cell accumulation in glomerular tufts and functional abnormality of glomerular microvasculature such as hyperpermeability.
    [Abstract] [Full Text] [Related] [New Search]