These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression.
    Author: Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J, Schneider P, Thesleff I, Mikkola ML.
    Journal: Development; 2007 Jan; 134(1):117-25. PubMed ID: 17164417.
    Abstract:
    Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Eda leads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh) signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-kappaB (NF-kappaB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.
    [Abstract] [Full Text] [Related] [New Search]