These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells. Author: Xia J, Masaki N, Jiang K, Yanagida S. Journal: J Phys Chem B; 2006 Dec 21; 110(50):25222-8. PubMed ID: 17165966. Abstract: In dye-sensitized TiO2 solar cells, charge recombination processes at interfaces between fluorine-doped tin oxide (FTO), TiO2, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. From this point of view, a high work function material such as titanium deposited by sputtering on FTO has been investigated as an effective blocking layer for preventing electron leakage from FTO without influencing electron injection. X-ray photoelectron spectroscopy analysis indicates that different species of Ti (Ti4+, Ti3+, Ti2+, and a small amount of Ti0) exist on FTO. Electrochemical and photoelectrochemical measurements reveal that thin films of titanium species, expressed as TiOx, work as a compact blocking layer between FTO and TiO2 nanocrystaline film, improving Voc and the fill factor, finally giving a better conversion efficiency for dye-sensitized TiO2 solar cells with ionic liquid electrolytes.[Abstract] [Full Text] [Related] [New Search]