These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Susceptibility of acid-softened enamel to mechanical wear--ultrasonication versus toothbrushing abrasion.
    Author: Wiegand A, Wegehaupt F, Werner C, Attin T.
    Journal: Caries Res; 2007; 41(1):56-60. PubMed ID: 17167260.
    Abstract:
    The study aimed to compare the amounts of softened enamel removable by ultrasonication and by toothbrushing abrasion of briefly eroded samples. Thirty bovine enamel samples were demineralized in hydrochloric acid (pH 2.1) for 60 s and were then either brushed with 350 brushing strokes in toothpaste slurry (group A) or distilled water (group B) or were ultrasonicated for 120 s (group C). Enamel loss was measured after 10, 20, 50 and then after every 50 brushing strokes or after 5, 30, 60 and 120 s ultrasonication. Samples were indented with a Knoop diamond after erosion, and enamel loss due to abrasion or wear was calculated from the change in indentation depth after mechanical treatment. Within- and between-group comparisons were performed by ANOVA or t test. Initially, enamel loss increased with increasing brushing treatment or ultrasonication time. Enamel loss did not increase after 300 brushing strokes in group A (534 +/- 169 nm) or 250 brushing strokes in group B (423 +/- 80 nm), or after 60 s ultrasonication (231 +/- 72 nm). Enamel loss was significantly higher in groups A and B than in group C. The results confirm that ultrasonication removes only the outer, more highly demineralized part of the softened enamel layer. Results also indicate that toothbrushing abrasion removes more softened enamel from briefly eroded enamel than ultrasonication, and therefore probably removes partly demineralized enamel from the deeper part of the softened layer. In vivo, excessive toothbrushing might remove the softened enamel layer almost completely.
    [Abstract] [Full Text] [Related] [New Search]