These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel LLC-PK1 renal epithelial cell mutant impaired in in vivo down-regulation of cAMP-mediated hormonal response. Author: Jans DA, Resink TJ, Hemmings BA. Journal: Arch Biochem Biophys; 1991 Mar; 285(2):377-81. PubMed ID: 1716864. Abstract: A novel "cAMP-resistant" variant of LLC-PK1 renal epithelial cells which is impaired in in vivo down-regulation of response following hormonal stimulation of adenylate cyclase (AC) is described. Compared to parental cells, the BIB27 mutant exhibited markedly higher in vivo activation of cAMP-dependent protein kinase (cAMP-PK) in response to the hormones salmon calcitonin (SCT) or [Arg8]-vasopressin (AVP) or the AC activator forskolin. The activation of cAMP-PK subsequent to agonist stimulation also persisted much longer in the mutant than in LLC-PK1 cells, although the cAMP-PK of BIB27 cells was normal in terms of both absolute levels and regulation by cAMP in vitro. Intracellular cAMP accumulation was also much higher in BIB27 than in LLC-PK1 cells following agonist stimulation. Production of cAMP could be detected in BIB27 cells even 12 h after treatment with AVP or SCT, whereas cAMP production in LLC-PK1 had returned to basal within 1 and 8 h, respectively. High levels of free cAMP-PK catalytic (C) subunit in BIB27 persisted even 12 h after hormone addition, meaning that the higher cAMP production in BIB27 did not result in the normal down-regulation of cAMP-PK C subunit levels. In vitro AC activity in BIB27 cell homogenates could be stimulated by hormones or receptor-independent agonists, but to a lesser extent than in LLC-PK1 cell homogenates. The SCT and AVP concentrations promoting half-maximal AC activation in BIB27 cells were about 10- and 3-fold higher than parental, respectively. BIB27 accordingly appeared to possess a mutation in AC responsible for the impairment of both in vitro response to agonists and the normal in vivo down-regulation processes following hormonal stimulation.[Abstract] [Full Text] [Related] [New Search]