These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of dicarboxylic anion transport by fluorescein isothiocyanate in skeletal sarcoplasmic reticulum. Author: Fisher DJ, Tate CA, Entman ML. Journal: Arch Biochem Biophys; 1991 Jul; 288(1):208-14. PubMed ID: 1716869. Abstract: It has been demonstrated previously that dicarboxylic anions are cotransported during ATP-dependent Ca2+ transport by skeletal muscle sarcoplasmic reticulum (SR) membranes, and that anion cotransport stimulates Ca2+ transport. In the current study, we present evidence that dicarboxylic anion cotransport and Ca2+ transport are kinetically distinct in SR, but both functions are mediated by the CaATPase protein. Preincubation of SR with 40 microM fluorescein isothiocyanate (FITC) (pH 7.0) inhibited essentially all of the Ca2+ ATPase activity, as well as active oxalate-supported and oxalate-independent 45Ca2+ accumulation. The addition of 1 mM beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) to the preincubation media fully protected the dicarboxylic anion-independent Ca2+ ATPase activity and the oxalate-independent active 45Ca2+ accumulation from the inhibitory effects of FITC; however, the ATP-associated [14C]oxalate accumulation, the oxalate-dependent 45Ca2+ accumulation, and the oxalate- and maleate-dependent stimulation of Ca2+ ATPase activity were not protected by AMP-PCP. Thus, the dicarboxylic anion accumulation and the stimulation of Ca2+ uptake by dicarboxylic anions could be functionally separated from the ATP-dependent, anion-independent Ca2+ translocation. FITC bound exclusively to the 100-kDa (CaATPase) and 92-kDa (phosphorylase) proteins in the SR membranes and to purified CaATPase in sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 1 mM AMP-PCP inhibited 50-55% of the FITC fluorescence on the 100-kDa protein, but did not significantly alter fluorescence on the 92-kDa protein. Two-dimensional gel analysis demonstrated a single 100-kDa protein in longitudinal SR membranes. FITC appears to inhibit ATP-dependent Ca2+ transport, and dicarboxylic anion translocation through interaction at separate domains of the CaATPase protein.[Abstract] [Full Text] [Related] [New Search]