These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Liver-selective transgene rescue of hypothalamic-pituitary-adrenal axis dysfunction in 11beta-hydroxysteroid dehydrogenase type 1-deficient mice.
    Author: Paterson JM, Holmes MC, Kenyon CJ, Carter R, Mullins JJ, Seckl JR.
    Journal: Endocrinology; 2007 Mar; 148(3):961-6. PubMed ID: 17170103.
    Abstract:
    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) acts as a reductase in vivo, regenerating active glucocorticoids within cells from circulating inert 11-keto forms, thus amplifying local glucocorticoid action. 11beta-HSD1 is predominantly expressed in liver and also adipose tissue and brain. Mice deficient in 11beta-HSD1 (11beta-HSD1(-/-)) exhibit adrenal hyperplasia, raised basal corticosterone levels, and increased hypothalamic-pituitary-adrenal (HPA) axis responses to stress. Whereas reduced peripheral glucocorticoid regeneration may explain adrenal hypertrophy and exaggerated stress responses, elevated basal glucocorticoid levels support a role for 11beta-HSD1 within the brain in amplifying glucocorticoid feedback. To test this hypothesis, apolipoprotein E-HSD1 mice overexpressing 11beta-HSD1 in liver were intercrossed with 11beta-HSD1(-/-) mice to determine whether complementation of hepatic 11beta-HSD1 can restore adrenal and HPA defects. Transgene-mediated delivery of 11beta-HSD1 activity to the liver rescued adrenal hyperplasia and reversed exaggerated HPA stress responses in 11beta-HSD1(-/-) mice. Unexpectedly, elevated nadir plasma corticosterone levels were also restored to control levels. Consistent with this, CYP11B1 mRNA expression in the adrenal cortex of 11beta-HSD1(-/-) mice was increased by 50% but returned to control levels in 11beta-HSD1(-/-) mice bearing the apolipoprotein E-HSD1 transgene. 11beta-HSD1(-/-) mice have lower plasma glucose levels, but the fall in plasma corticosterone with sucrose supplementation was similar in 11beta-HSD1(-/-) and control mice, suggesting glucose deficiency is not the main mechanism whereby basal corticosterone levels are elevated in the null mice. Thus, regeneration of glucocorticoids by 11beta-HSD1 in the liver normalizes all aspects of HPA axis dysregulation in 11beta-HSD1(-/-) mice, without restoration of enzyme activity in key feedback areas of the forebrain. Therefore, hepatic glucocorticoid metabolism influences basal as well as stress-associated functions of the HPA axis.
    [Abstract] [Full Text] [Related] [New Search]