These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aerobic fate of the C-3'-thymidinyl radical in single-stranded DNA.
    Author: Lahoud GA, Hitt AL, Bryant-Friedrich AC.
    Journal: Chem Res Toxicol; 2006 Dec; 19(12):1630-6. PubMed ID: 17173376.
    Abstract:
    Oxidative events that target the sugar-phosphate backbone of DNA can lead to reactive fragments that interfere with DNA repair, transcription and translation by the formation of cross-links and adducts of proteins and nucleobases. Here we report the formation of several such lesions through the aerobic degradation of an independently generated C-3'-thymidinyl radical in 2'-deoxyoligonucleotides. Individual fragments were identified by independent synthesis and comparison of retention times in high-performance liquid chromatography (HPLC) and/or matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) along with gel electrophoresis. The formation of this reactive intermediate in the presence of oxygen was found to produce 3'-phosphoglycolaldehyde (3'-PGA) as well as 3'-ketoenolether (3'-KEE), 3'-phosphoglycolate (3'-PG), and 5'-aldehyde terminated oligonucleotide fragments. Additionally, a significant outcome of C-3'-thymidinyl radical formation in DNA oligomers is a strand break resulting in one 3'- and two 5'-phosphate-terminated oligomers. These results suggest the involvement of several sugar derived reactive species upon C-3'-radical initiated scission of single-stranded DNA under aerobic conditions. The electrophilic nature of several of these products as well as their formation through a single oxidative event can make the presence of a C-3'-DNA radical more detrimental to the cell than products derived from more frequently occurring DNA sugar radicals.
    [Abstract] [Full Text] [Related] [New Search]