These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lipid chain selectivity by outer membrane phospholipase A. Author: Stanley AM, Treubrodt AM, Chuawong P, Hendrickson TL, Fleming KG. Journal: J Mol Biol; 2007 Feb 16; 366(2):461-8. PubMed ID: 17174333. Abstract: Outer membrane phospholipase A (OMPLA) is a unique, integral membrane enzyme found in Gram-negative bacteria and is an important virulence factor for pathogens such as Helicobacter pylori. This broad-specificity lipase degrades a variety of lipid substrates, and it plays a direct role in adjusting the composition and permeability of bacterial membranes under conditions of stress. Interestingly, OMPLA shows little preference for the lipid headgroup and, instead, the length of the hydrophobic acyl chain is the strongest determinant for substrate selection by OMPLA, with the enzyme strongly preferring substrates with chains equal to or longer than 14 carbon atoms. The question remains as to how a hydrophobic protein like OMPLA can achieve this specificity, particularly when the shorter chains can be accommodated in the binding pocket. Using a series of sulfonyl fluoride inhibitors with various lengths of acyl chain, we show here that the thermodynamics of substrate-induced OMPLA dimerization are guided by the acyl chain length, demonstrating that OMPLA uses a unique biophysical mechanism to select its phospholipid substrate.[Abstract] [Full Text] [Related] [New Search]