These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Experimental and ab initio study of a new D 1Deltag state of the C3 radical. Author: Saha S, Western CM. Journal: J Chem Phys; 2006 Dec 14; 125(22):224307. PubMed ID: 17176141. Abstract: We report here the first observation of the D (1)Delta(g) state of the C(3) radical, which provides the first comprehensively analyzed example of the dynamic Renner-Teller splitting in Delta symmetry. Two color double resonance spectroscopy via the A (1)Pi(u) state was employed to experimentally probe an extensive range of vibronic levels in this D (1)Delta(g) state, covering all three modes of vibration of C(3). The analysis was supported by ab initio potential energy surface calculations on the C(3) radical to outline the lowest eight singlet electronic states. Two methods were used to analyze the Renner-Teller effect. The first method is an empirical Hamiltonian based on normal modes, using harmonic oscillator functions as a basis, with Renner-Teller and other terms added as required, which allows conventional vibrational parameters to be determined. The second is a much larger program that uses the exact kinetic energy operator for a triatomic molecule to calculate vibronic energy levels directly from the Renner-Teller pair of potential energy surfaces. Both methods give a good fit to the experimental results, with only a small adjustment to the ab initio surfaces required for the latter. One of the overall conclusions is that the Renner-Teller effect is rather smaller in the D (1)Delta(g) state than in the A (1)Pi(u) state.[Abstract] [Full Text] [Related] [New Search]