These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling.
    Author: Brunel C, Romby P, Westhof E, Ehresmann C, Ehresmann B.
    Journal: J Mol Biol; 1991 Sep 05; 221(1):293-308. PubMed ID: 1717695.
    Abstract:
    The conformation of Escherichia coli 5 S rRNA was investigated using chemical and enzymatic probes. The four bases were monitored at one of their Watson-Crick positions with dimethylsulfate (at C(N-3) and A(N-1], with a carbodiimide derivative (at G(N-1) and U(N-3] and with kethoxal (at G(N-1, N-2]. Position N-7 of purine was probed with diethylpyrocarbonate (at A(N-7] and dimethylsulfate (at G(N-7]. Double-stranded or stacked regions were tested with RNase V1 and unpaired guanine residues with RNase T1. We also used lead(II) that has a preferential affinity for interhelical and loop regions and a high sensitivity for flexible regions. Particular care was taken to use uniform conditions of salt, magnesium, pH and temperature for the different enzymatic chemical probes. Derived from these experimental data, a three dimensional model of the 5 S rRNA was built using computer modeling which integrates stereochemical constraints and phylogenetic data. The three domains of 5 S rRNA secondary structure fold into a Y-shaped structure that does not accommodate long-range tertiary interactions between domains. The three domains have distinct structural and dynamic features as revealed by the chemical reactivity and the lead(II)-induced hydrolysis: domain 2 (loop B/helix III/loop C) displays a rather weak structure and possesses dynamic properties while domain 3 (helix V/region E/helix IV/loop D) adopts a highly structured and overall helical conformation. Conserved nucleotides are not crucial for the tertiary folding but maintain an intrinsic structure in the loop regions, especially via non-canonical pairing (A.G, G.U, G.G, A.C, C.C), which can close the loops in a highly specific fashion. In particular, nucleotides in the large external loop C fold into an organized conformation leading to the formation of a five-membered loop motif. Finally, nucleotides at the hinge region of the Y-shape are involved in a precise array of hydrogen bonds based on a triple interaction between U14, G69 and G107 stabilizing the quasi-colinearity of helices II and V. The proposed tertiary model is consistent with the localization of the ribosomal protein binding sites and possesses strong analogy with the model proposed for Xenopus laevis 5 S rRNA, indicating that the Y-shape model can be generalized to all 5 S rRNAs.
    [Abstract] [Full Text] [Related] [New Search]