These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microsolvation effects on the excited-state dynamics of protonated tryptophan. Author: Mercier SR, Boyarkin OV, Kamariotis A, Guglielmi M, Tavernelli I, Cascella M, Rothlisberger U, Rizzo TR. Journal: J Am Chem Soc; 2006 Dec 27; 128(51):16938-43. PubMed ID: 17177445. Abstract: To better understand the complex photophysics of the amino acid tryptophan, which is widely used as a probe of protein structure and dynamics, we have measured electronic spectra of protonated, gas-phase tryptophan solvated with a controlled number of water molecules and cooled to approximately 10 K. We observe that, even at this temperature, the bare molecule exhibits a broad electronic spectrum, implying ultrafast, nonradiative decay of the excited state. Surprisingly, the addition of two water molecules sufficiently lengthens the excited-state lifetime that we obtain a fully vibrationally resolved electronic spectrum. Quantum chemical calculations at the RI-CC2/aug-cc-pVDZ level, together with TDDFT/pw based first-principles MD simulations of the excited-state dynamics, clearly demonstrate how interactions with water destabilize the photodissociative states and increase the excited-state lifetime.[Abstract] [Full Text] [Related] [New Search]