These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. Author: Moon DO, Kim KC, Jin CY, Han MH, Park C, Lee KJ, Park YM, Choi YH, Kim GY. Journal: Int Immunopharmacol; 2007 Feb; 7(2):222-9. PubMed ID: 17178390. Abstract: Upon activation, microglia release proinflammatory mediators that play important roles in eliciting neuroinflammatory responses associated with neurodegenerative diseases. The anti-inflammatory properties of eicosapentaenoic acid (EPA) have been known, however, the effects responsible for lipopolysaccharide (LPS)-induced activation remain poorly understood in microglia. In the present study, we investigated the effects of EPA on the expression of proinflammatory mediators in LPS-stimulated BV2 microglia. EPA significantly inhibited the release of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and proinflammatory cytokines such as interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. EPA also attenuated the production of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and proinflammatory cytokines at mRNA and/or protein levels. Moreover, EPA suppressed NF-kappaB activation by blocking IkappaB degradation, and also blocked the mitogen-activated protein kinases (MAPKs) such as ERK, p38 and JNK, and the Akt pathway. The anti-inflammatory properties of EPA may be useful for ameliorating neurodegenerative diseases as well as suppressing LPS-induced shock.[Abstract] [Full Text] [Related] [New Search]