These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural basis of peroxide-mediated changes in human hemoglobin: a novel oxidative pathway. Author: Jia Y, Buehler PW, Boykins RA, Venable RM, Alayash AI. Journal: J Biol Chem; 2007 Feb 16; 282(7):4894-4907. PubMed ID: 17178725. Abstract: Hydrogen peroxide (H(2)O(2)) triggers a redox cycle between ferric and ferryl hemoglobin (Hb) leading to the formation of a transient protein radical and a covalent hemeprotein cross-link. Addition of H(2)O(2) to highly purified human hemoglobin (HbA(0)) induced structural changes that primarily resided within beta subunits followed by the internalization of the heme moiety within alpha subunits. These modifications were observed when an equal molar concentration of H(2)O(2) was added to HbA(0) yet became more abundant with greater concentrations of H(2)O(2). Mass spectrometric and amino acid analysis revealed for the first time that betaCys-93 and betaCys-112 were oxidized extensively and irreversibly to cysteic acid when HbA(0) was treated with H(2)O(2). Oxidation of further amino acids in HbA(0) exclusive to the beta-globin chain included modification of betaTrp-15 to oxyindolyl and kynureninyl products as well as betaMet-55 to methionine sulfoxide. These findings may therefore explain the premature collapse of the beta subunits as a result of the H(2)O(2) attack. Analysis of a tryptic digest of the main reversed phase-high pressure liquid chromatography fraction revealed two alpha-peptide fragments (alpha128-alpha139) and a heme moiety with the loss of iron, cross-linked between alphaSer-138 and the porphyrin ring. The novel oxidative pathway of HbA(0) modification detailed here may explain the diverse oxidative, toxic, and potentially immunogenic effects associated with the release of hemoglobin from red blood cells during hemolytic diseases and/or when cell-free Hb is used as a blood substitute.[Abstract] [Full Text] [Related] [New Search]