These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study.
    Author: Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD.
    Journal: J Bone Miner Res; 2007 Mar; 22(3):425-33. PubMed ID: 17181395.
    Abstract:
    UNLABELLED: We assessed the role of low aBMD and impaired architecture-assessed by an HR-pQCT system-in a case-control study of postmenopausal women with fractures. Vertebral and nonvertebral fractures are associated with low volumetric BMD and architectural alterations of trabecular and cortical bone, independent of aBMD assessed by DXA. INTRODUCTION: Alterations of bone architecture and low BMD both contribute to skeletal fragility, but the contribution of cortical and trabecular architecture, independently of areal BMD (aBMD), to the risk of fracture in postmenopausal women has not been thoroughly evaluated. We assessed the role of impaired architecture and low BMD in postmenopausal women with fractures. MATERIALS AND METHODS: A matched case-control study in women from the OFELY cohort was performed after 13 years of follow-up. One hundred one women (mean, 73.7+/-8 years) who sustained a fragility fracture during the follow-up of the study were age-matched with one control who never had a fracture. Density and architecture at the distal radius and tibia were measured with high-resolution pQCT (HR-pQCT) using an XTreme CT (Scanco Medical AG, Bassersdorf, Switzerland). aBMD at the total hip and ultradistal radius was measured by DXA. RESULTS: There were 80 peripheral fractures in 72 women, 44 vertebral fractures in 34 women, and both types of fractures in 5 women over the 14 years of follow-up. At the distal radius, women with fractures had lower volumetric total (D tot) and trabecular (D trab) BMDs, BV/TV, cortical thickness (Cort Th), trabecular number (TbN), and trabecular thickness (TbTh) and higher trabecular separation (TbSp) and distribution of trabecular separation (TbSpSd) than controls without fractures. In a logistic model, each SD decrease of volumetric total and trabecular densities was associated with a significantly increased risk of fracture at both sites (ORs ranged from 2.00 to 2.47). After adjusting for aBMD measured by DXA at the ultradistal radius, differences between cases and controls remained significant for D trab, and there was a similar trend for TbN, TbSp, and TbSpSd, with adjusted ORs ranging from 1.32 to 1.50. At the distal tibia, before and after adjusting for total hip aBMD, differences between cases and controls remained significant for D tot, D trab, Cort Th, and TbTh, with adjusted ORs ranging from 1.80 to 2.09. CONCLUSIONS: In postmenopausal women, vertebral and nonvertebral fractures are associated with low volumetric BMD and architectural alterations of trabecular and cortical bone that can be assessed noninvasively and that are partially independent of aBMD assessed by DXA.
    [Abstract] [Full Text] [Related] [New Search]