These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improvement of the detection of myocardial ischemia thanks to information technologies.
    Author: Fayn J, Rubel P, Pahlm O, Wagner GS.
    Journal: Int J Cardiol; 2007 Aug 21; 120(2):172-80. PubMed ID: 17184859.
    Abstract:
    BACKGROUND: The standard 12-lead ECG remains one of the basic investigations for the early detection and assessment of acute coronary syndromes. It is easy to perform, anywhere and anytime, and can be digitally transmitted within minutes to an emergency medical service for remote advice and triage. But the conventional ST-segment deviation criteria are of limited diagnostic accuracy. The purpose of this study is to investigate how much the use of computerized ECG techniques based on the measurement of the serial spatiotemporal ECG changes could improve the detection accuracy of transmural myocardial ischemia. METHODS: We considered the serial changes of continuous 12-lead ECGs of 90 patients undergoing elective percutaneous coronary angioplasty (PTCA) recorded during balloon inflation as an experimental model of ECG changes induced by coronary artery occlusion. The spatiotemporal ECG changes were measured according to the CAVIAR method and assessed by multivariate discriminant analysis in reference to serial changes of control recordings and standard ECG criteria. RESULTS: The diagnostic accuracy of the CAVIAR criteria for ischemia detection was 97%, with sensitivity of 98% and specificity of 96%, whereas the diagnostic accuracy of the conventional ST-segment criteria was 74%, with sensitivity of 60% and specificity of 88%. The increase of overall performance was obtained for all the occlusion locations. CONCLUSIONS: Computer-assisted quantitative serial ECG analysis, taking into account the spatiotemporal changes of the QRS and T waves, would provide the physician with additional information for significantly improving the detection of transmural myocardial ischemia.
    [Abstract] [Full Text] [Related] [New Search]