These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model. Author: Vermeulen A, Gysemans KP, Bernaerts K, Geeraerd AH, Van Impe JF, Debevere J, Devlieghere F. Journal: Int J Food Microbiol; 2007 Mar 20; 114(3):332-41. PubMed ID: 17184866. Abstract: Growth/no growth models can be used to determine the chance that microorganisms will grow in specific environmental conditions. As a consequence, these models are of interest in the assessment of the safety of foods which can be contaminated with food pathogens. In this paper, growth/no growth data for Listeria monocytogenes (in a monoculture and in a mixed strain culture) are presented. The data were gathered at 7 degrees C in Nutrient Broth with different combinations of environmental factors pH (5.0-6.0, six levels), water activity (0.960-0.990, six levels) and acetic acid concentration (0-0.8% (w/w), five levels). This combination of environmental factors for the development of a growth/no growth model was based on the characteristics of sauces and mayonnaise based salads. The strains used were chosen from screening experiments in which the pH, water activity and acetic acid resistance of 26 L. monocytogenes strains (LFMFP culture collection) was determined at 30 degrees C in Brain Heart Infusion broth. The screening showed that most L. monocytogenes strains were not able to grow at a(w)<0.930, pH<4.3 or a total acetic acid concentration >0.4% (w/w). Among these strains, the ones chosen were the most resistant to one of these factors in the hope that, if the resulting model predicted no growth at certain conditions for those more resistant strains, then these predictions would also be valid for the less resistant strains. A mixed strain culture was also examined to combine the strains that were most resistant to one of the factors. A full factorial design with the selected strains was tested. The experiments were performed in microtiter plates and the growth was followed by optical density measurements at 380 nm. The plates were inoculated with 6 log CFU/ml and twenty replicates were made for each treatment combination. These data were used (1) to determine the growth/no growth boundary and (2) to estimate the influence of the environmental conditions on the time to detection. From the monoculture and mixed strain data, the growth boundary of L. monocytogenes is shown not to be a straight cut-off but a rather narrow transition zone. The experiments also showed that in the studied region, a(w) did not have a pronounced influence on the position of the growth/no growth boundary while a low concentration of acetic acid (0.2% (w/w)) and a pH decrease from 6.0 to 5.8 was sufficient to significantly reduce the possibility of growth. The determination of the time to detection showed a significant increase at the combinations of environmental conditions near the 'no growth zone'. For example, at 0.2% (w/w) acetic acid, there was an increase from +/-10 days to 30 days by lowering pH from 5.8 to 5.6 at a(w) values of 0.985 and 0.979, while at pH 5.4 less than 50% growth occurred for all a(w) values.[Abstract] [Full Text] [Related] [New Search]