These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The rice mitochondrial nad3 gene has an extended reading frame at its 5' end: nucleotide sequence analysis of rice trnS, nad3, and rps12 genes.
    Author: Suzuki T, Kazama S, Hirai A, Akihama T, Kadowaki K.
    Journal: Curr Genet; 1991 Sep; 20(4):331-7. PubMed ID: 1718614.
    Abstract:
    The nucleotide sequences of the tRNASer (trnS), pseudo-tRNA, NADH dehydrogenase subunit 3 (nad3), and ribosomal protein S12 (rps12) genes from rice mitochondrial DNA (mtDNA) were determined. Both trnS and nad3 were confirmed to be single copy genes by Southern blot analysis. The nad3 and rps12 genes were arranged in tandem, and the two were co-transcribed. The order of the above four genes in rice mtDNA differed from the linear order observed for the wheat and maize genes. In rice mitochondria, the trnS and pseudo-tRNA genes were found upstream of the cytochrome c oxidase subunit I gene, instead of the nad3 and rps12 genes as observed in maize and wheat. Additionally, while the rice nad3 and rps12 genes remain paired, they too are in a different sequence environment from the wheat and maize genes. The apparent split of the two pairs of genes indicates the occurrence of a mitochondrial intramolecular recombinational event. Another peculiarity is that the sequence upstream of the translational initiation codon of the rice nad3 gene is different from that of the wheat and maize versions. The ATG initiation codon of wheat and maize nad3 is replaced by TTG in the rice nad3. A subsequent deduction of the amino acid sequence, accompanied by a primer extension analysis, indicates that the predicted rice NAD3 protein has an additional 37 amino acid residues at its N-terminus compared to the wheat and maize NAD3 proteins. cDNA sequence analysis showed no introns or the occurrence of RNA editing at the newly replaced TTG codon.
    [Abstract] [Full Text] [Related] [New Search]