These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of Prn-p gene and stable transfection of Prn-p cDNA in leukemia MEL and neuroblastoma N2a cells increased production of PrP(C) but not prevented DNA fragmentation initiated by serum deprivation.
    Author: Gougoumas DD, Vizirianakis IS, Triviai IN, Tsiftsoglou AS.
    Journal: J Cell Physiol; 2007 May; 211(2):551-9. PubMed ID: 17186498.
    Abstract:
    Prion protein (PrP(C)) via its isoform PrP(SC) is involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). We observed that murine erythroleukemia (MEL) cells arrested in phase G(1) undergo transcriptional activation of Prn-p gene. Here, we explored the potential role of activation of Prn-p gene and cytosolic accumulation of PrP(C) in growth arrest, differentiation, and apoptotic DNA fragmentation by stably transfecting MEL and N2a cells with Prn-p cDNA. Stably transfected MEL cells (clones # 6, 12, 20, 38, and 42) were assessed for growth and differentiation, while clones N2a13 and N2a8 of N2a cells for growth and apoptosis by flow cytometry using Annexin V and propidium iodide (PI). Our results indicate that (a) Induction of terminal differentiation of stably transfected MEL cells led to growth arrest, activation of Prn-p gene, concomitant expression of transfected Prn-p cDNA, suppression of bax gene, cytosolic accumulation of PrP(C), and DNA fragmentation. The latter was also induced in non-differentiated MEL cells growing under serum-free conditions; (b) similarly, serum deprivation promoted growth arrest, apoptosis/necrosis associated with DNA fragmentation in parental N2a and N2a13 cells that produced relative high level of PrP(C) and not PrP(SC). These data indicate that activation of Prn-p gene and expression of transfected Prn-p cDNA in cells of both hematopoietic and neuronal origin occurred concomitantly, and led to cytosolic accumulation of PrP(C) and DNA damage induced by serum deprivation. PrP(C) production failed to protect DNA fragmentation induced by serum deprivation. The question how does PrP(C) contribute to growth arrest and DNA fragmentation is discussed.
    [Abstract] [Full Text] [Related] [New Search]