These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Further observations on the facilitation of muscle responses to cortical stimulation by voluntary contraction.
    Author: Thompson PD, Day BL, Rothwell JC, Dressler D, Maertens de Noordhout A, Marsden CD.
    Journal: Electroencephalogr Clin Neurophysiol; 1991 Oct; 81(5):397-402. PubMed ID: 1718726.
    Abstract:
    The effect of voluntary contraction on the discharge of single motor units following electrical and magnetic stimulation of the motor cortex was examined using the post-stimulus time histogram (PSTH) technique. The latencies of responses in single motor units of the first dorsal interosseous muscle to cortical stimulation were 2-4 msec shorter when the muscle was contracting than when at rest in 9 of 10 units studied. These latency differences are comparable with those recorded by surface electromyography for compound muscle action potentials following cortical stimulation in relaxed and active muscles. The new findings are that the intensity of cortical stimulation required to discharge a resting motor unit to produce a single PSTH peak produced multiple PSTH peaks when the same unit was contracting. The timing of the PSTH peak of relaxed motor unit discharge corresponded to one of the later PSTH peaks (usually the second) when the motor unit was voluntarily activated. These findings are in keeping with our previous suggestions that the longer latency of responses in relaxed muscles is due to the time taken for temporal summation of multiple descending corticospinal volleys at the cortico-motoneurone synapse. Facilitation produced by voluntary contraction occurs at least in part at the level of the spinal cord by lowering motoneurone threshold to enable discharge on the initial descending volley. The higher threshold of relaxed muscles is related to the higher intensities of stimulation needed to recruit multiple descending volleys and discharge resting motoneurones.
    [Abstract] [Full Text] [Related] [New Search]