These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclic adenosine 3',5'-monophosphate (cAMP)-dependent and cAMP-independent regulation of parathyroid hormone receptors on UMR 106-01 osteoblastic osteosarcoma cells. Author: Abou-Samra AB, Zajac JD, Schiffer-Alberts D, Skurat R, Kearns A, Segre GV, Bringhurst FR. Journal: Endocrinology; 1991 Nov; 129(5):2547-54. PubMed ID: 1718728. Abstract: The osteoblast-like cells, UMR 106-01, express PTH receptors that are coupled to adenylate cyclase. Recently, we reported the isolation of a UMR 106-01 subclone, UMR 4-7, that is stably transfected with a Zn(++)-inducible mutant of the regulatory subunit of protein kinase A. Incubation of UMR 4-7 cells with Zn++ renders the cells unresponsive to cAMP agonists. This subclone, therefore, seemed particularly suitable for studies of PTH receptor regulation. In UMR 106-01 cells, PTH receptors are strikingly down-regulated by pretreatment with 8-Br-cAMP or 3-isobutyl-1-methylxanthine for 2 days. In UMR 4-7 cells, this effect is totally prevented by prior and concurrent treatment with Zn++. Zn++ addition to UMR 106 cells does not modify these responses. Treatment with the PTH agonist [Nle8,18,Tyr34]bovine PTH(1-34)NH2 [(NlePTH(1-34)] also markedly down-regulates PTH receptors in UMR 106 cells, but this effect is only partially inhibited in Zn(++)-induced UMR 4-7 cells. At high doses, the PTH antagonist, [Nle8,18,Tyr34]bovine PTH(3-34)NH2 [NlePTH(3-34)] also (partially) reduces PTH receptor availability. Receptor regulation by NlePTH(3-34) is not blocked in the cAMP-resistant cells, however. Coincubation of submaximal doses of NlePTH(1-34) (1 nM) with NlePTH(3-34) (1 microM) reduces receptor availability more than when the cells are exposed to either ligand alone. This decrease is only partially inhibited in Zn(++)-induced UMR 4-7 cells. In contrast to its additive effect on receptor regulation, NlePTH(3-34) efficiently competes for binding to the PTH receptor in UMR 106-01 cells and antagonizes the stimulatory effects of NlePTH(1-34) on both intracellular cAMP accumulation and gene expression driven by a transiently transfected synthetic cAMP-responsive enhancer. In conclusion, homologous down-regulation of PTH receptors is mediated by activation of both cAMP-dependent (via protein kinase A) and cAMP-independent pathways. PTH activates both pathways, whereas the effect of NlePTH(3-34) appears to be exclusively cAMP-independent. These results give new insights into mechanisms of PTH receptor regulation.[Abstract] [Full Text] [Related] [New Search]