These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuronal activity in the primary visual cortex of the cat freely viewing natural images.
    Author: Maldonado PE, Babul CM.
    Journal: Neuroscience; 2007 Feb 23; 144(4):1536-43. PubMed ID: 17187932.
    Abstract:
    Many studies have now demonstrated that neurons in the visual cortex of cats and monkeys change their activity when stimuli are presented beyond their classical receptive field, and that these responses are not readily apparent from their receptive field properties. However few studies have been conducted to investigate the discharge properties of neurons in the visual cortex of animals when they are allow to freely view natural images. We employ tetrodes, which enable simultaneous and separable recordings of small numbers of neighboring neurons, to record 102 single units from 59 sites from areas 17 and 18 of two alert cats. While the animals viewed either natural images or black screens, they made frequent saccadic eye movements and gaze fixations. Fixations onto an image's location increased neuronal firing peaking at 80-100 ms after the fixation onset, to then decrease steadily with time despite continuous fixation. Saccades trigger a fast decrease in firing rate for both images and darkness. When we examined the incidence of correlated firing, we observed significant synchrony during the initial phases of visual fixations when the animals viewed natural scenes. Such synchrony was absent during saccadic eye movements and during eye movements in darkness. Our data revealed that scanning of natural scenes is associated with a rapid succession of distinct fixation-related activation patterns that included transient rate changes and excess coincident firing. The transient nature of these synchronization phenomena suggests a fast acting mechanism, which is in good agreement with the evidence that basic operations of scene analysis must be accomplished within a few tens of milliseconds in primary visual cortex.
    [Abstract] [Full Text] [Related] [New Search]