These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult.
    Author: Yeh TC, Chiang PC, Li TK, Hsu JL, Lin CJ, Wang SW, Peng CY, Guh JH.
    Journal: Biochem Pharmacol; 2007 Mar 15; 73(6):782-92. PubMed ID: 17188247.
    Abstract:
    Hepatocellular carcinoma is a very common malignancy and is chemoresistant to currently available chemotherapeutic agents. Endoplasmic reticulum (ER) stress-induced apoptotic pathway is suggested to be less affected by the resistance mechanisms, becoming a potential target of chemotherapeutic strategy. The anticancer effects and expression of GADD153, a transcription factor induced by ER stress, were examined in hepatocellular carcinoma Hep3B cells. The correlation between these two parameters was constructed under flavonoid stimulation with a correlation coefficient (r) of 0.8. The data also showed that genistein (isoflavone) was the most effective one. Genistein induced the activation of several ER stress-relevant regulators, including m-calpain, GADD153, GRP78 and caspase-12. Furthermore, genistein-induced effect was inhibited in cells transfected with antisense GADD153 cDNA, indicating a functional role of GADD153. Notably, genistein induced the activation of caspase-2, whereas did not cause the DNA damage. It also triggered the production of ROS. The antioxidant trolox significantly reduced ROS accumulation, but did not modify genistein-induced apoptotic cell death. The long-term exposure (48 h) of cells to genistein caused Mcl-1 down-regulation and Bad cleavage; furthermore, cyclosporin A (an inhibitor of mitochondrial permeability transition pore) almost completely abolished genistein-induced loss of mitochondrial membrane potential, and induced a 30% reverse of apoptosis caused by long-term treatment (48 h) of genistein, suggesting the involvement of mitochondrial stress in the late phase of genistein-induced effect. Taken together, it is suggested that genistein induces the anticancer effect through a mechanism initiated by ER stress and facilitated by mitochondrial insult in Hep3B cells.
    [Abstract] [Full Text] [Related] [New Search]