These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dimeric core structure of modular stator subunit E of archaeal H+ -ATPase.
    Author: Lokanath NK, Matsuura Y, Kuroishi C, Takahashi N, Kunishima N.
    Journal: J Mol Biol; 2007 Feb 23; 366(3):933-44. PubMed ID: 17189637.
    Abstract:
    Archaeal H(+)-ATPase (A-ATPase) is composed of an A(1) region that hydrolyzes ATP and an integral membrane part A(0) that conducts protons. Subunit E is a component of peripheral stator(s) that physically links A(1) and A(0) parts of the A-ATPase. Here we report the first crystal structure of subunit E of A-ATPase from Pyrococcus horikoshii OT3 at 1.85 A resolution. The protomer structure of subunit E represents a novel fold. The quaternary structure of subunit E is a homodimer, which may constitute the core part of the stator. To investigate the relationship with other stator subunit H, the complex of subunits EH was prepared and characterized using electrophoresis, mass spectrometry, N-terminal sequencing and circular dichroism spectroscopy, which revealed the polymeric and highly helical nature of the EH complex with equimolar stoichiometry of both the subunits. On the basis of the modular architecture of stator subunits, it is suggested that both cytoplasm and membrane sides of the EH complex may interact with other subunits to link A(1) and A(0) parts.
    [Abstract] [Full Text] [Related] [New Search]