These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rhizopus oligosporus and yeast co-cultivation during barley tempeh fermentation--nutritional impact and real-time PCR quantification of fungal growth dynamics. Author: Feng XM, Passoth V, Eklund-Jonsson C, Alminger ML, Schnürer J. Journal: Food Microbiol; 2007 Jun; 24(4):393-402. PubMed ID: 17189765. Abstract: Barley tempeh was produced by fermenting barley kernels with Rhizopus oligosporus. The potential of the yeasts Saccharomyces cerevisiae (three strains), S. boulardii (one strain), Pichia anomala (one strain) and Kluyveromyces lactis (one strain) to grow together with R. oligosporus during barley tempeh fermentation was evaluated. All yeast strains grew during the fermentation and even during cold storage of tempeh (P<0.01). The growth of yeasts slightly increased the ergosterol contents, but did not influence amino acid contents and compositions, and did not reduce phytate contents. Slight increases of vitamins B(6) and niacinamide, and slight decreases of B(1) and biotin were observed. Quantification of fungal growth is difficult during mixed species fermentations because ergosterol is found in all fungal species, and colony-forming-unit (cfu) estimations are not reliable for R. oligosporus and other sporulating fungi. Therefore, we developed a quantitative real-time PCR method for individually quantifying S. cerevisiae and R. oligosporus growth in barley tempeh. The PCR results were highly correlated with the ergosterol content of R. oligosporus and with the number of cfu of S. cerevisiae. Thus, real-time PCR is a rapid and selective method to quantify yeasts and R. oligosporus during mixed species fermentation of inhomogenous substrate such as barley tempeh.[Abstract] [Full Text] [Related] [New Search]