These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucagon-like peptide-1 stimulates GABA formation by pancreatic beta-cells at the level of glutamate decarboxylase. Author: Wang C, Mao R, Van de Casteele M, Pipeleers D, Ling Z. Journal: Am J Physiol Endocrinol Metab; 2007 Apr; 292(4):E1201-6. PubMed ID: 17190904. Abstract: Pancreatic beta-cells are the major extraneural site of glutamate decarboxylase expression (GAD). During culture of isolated beta-cells, the GAD product gamma-aminobutyrate (GABA) is rapidly released in the medium, independently of insulin. It is considered as a possible mediator of beta-cell influences on alpha-cells, acinar cells, and/or infiltrating lymphocytes. In this perspective, we investigated the regulation of GABA release by rat beta-cells during a 24-h culture period. Glucose was previously reported to inhibit GABA release by diverting cellular GABA to mitochondrial breakdown through activation of GABA transferase (GABA-T). In the present study, glucagon-like peptide-1 (GLP-1) was shown to stimulate GABA formation at the level of GAD, its effect being suppressed by the GAD inhibitor allylglycine and remaining unaltered by the GABA-T inhibitor gamma-vinyl-GABA. The stimulatory action of GLP-1 is cAMP dependent, being reproduced by the adenylate cyclase activator forskolin and the cAMP analog N(6)-benzoyladenosine-3',5'-cAMP and inhibited by a PKA inhibitor. It is dependent on protein synthesis and associated with an increased expression of GAD67 but not GAD65. The GLP-1-induced stimulation of GAD activity in beta-cells can elevate medium GABA levels in conditions of glucose-driven intracellular GABA breakdown and thus maintain GABA-mediated beta-cell influences on neighboring cells.[Abstract] [Full Text] [Related] [New Search]