These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization.
    Author: Uno T, Tabata H, Kawai T.
    Journal: Anal Chem; 2007 Jan 01; 79(1):52-9. PubMed ID: 17194121.
    Abstract:
    Here, we report the development of a peptide-nucleic acid (PNA)-modified ion-sensitive field-effect transistor (IS-FET)-based biosensor that takes advantage of the change in the surface potential upon hybridization of a negatively charged DNA. PNA was immobilized on a silicon nitride gate insulator by an addition reaction between a maleimide group introduced on the gate surface, the succinimide group of N-(6-maleimidocaproyloxy) succinimide, and the thiol group of the terminal cysteine in PNA. The surface was characterized after each step of the reaction by X-ray photoelectron spectroscopy analysis, and the kinetic analysis of the hybridization events was assessed by surface plasmon resonance. In addition, we measured the -potential before and after PNA-DNA hybridization in the presence of counterions to investigate the change in surface charge density at the surface-solution interface within the order of the Debye length. On the basis of the zeta-potential, the surface charge density, DeltaQ, calculated using the Grahame equation was approximately 4.0 x 10(-3) C/m2 and the estimated number of hybridized molecules was at least 1.7 x 10(11)/cm2. The I-V characteristics revealed that the PNA-DNA duplexes induce a positive shift in the threshold voltage, VT, and a decrease in the saturated drain current, ID. These results demonstrate that direct detection of DNA hybridization should be possible using a PNA-modified IS-FET-based biosensor. PNA is particularly advantageous for this system because it enables highly specific and selective binding at low ionic strength.
    [Abstract] [Full Text] [Related] [New Search]