These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The relationship between alcohol elimination rate and increasing blood alcohol concentration--calculated from two consecutive blood specimens. Author: Simic M, Tasic M. Journal: Forensic Sci Int; 2007 Oct 02; 172(1):28-32. PubMed ID: 17196778. Abstract: In the period 1991-2005, a blood-alcohol concentration (BAC) analysis was carried out at the Institute of forensic medicine in Novi Sad including 2023 two consecutive blood specimens using the Headspace Gas Chromatography method. Cases with no alcohol concentration values, as well as cases where blood samples were taken within 1 h after the criminal act, were not taken into consideration. Following this rule, 1198 cases were considered in this study and all samples were grouped in 29 ranges of BAC1 of delta(BAC) = 0.1 g/kg, starting from 0.1-0.19 g/kg to 2.9-2.99 g/kg of absolute alcohol. Gathered results and elimination curve differ from the zero-order model of elimination proposed by Widmark and point to an elimination process similar to a well-known Michaelis-Menten elimination kinetics model and its variants. Results reported in this study show dependence of alcohol elimination rate (beta-slope) and BAC value. The analysis of beta60-slope versus BAC shows that a correlation between beta60 (y) and BAC (x) has a logarithmic trend line. The value of alcohol elimination rate shows a slight increment with increase of BAC alcohol, with the mean value of beta60 = 0.221 +/- 0.075 g/kg. Differences in values of beta60 among consecutive intervals of delta(BAC) = 0.1 g/kg are not significant (p>0.05). When obtained samples were grouped into ranges of 0.5 g/kg each in these intervals beta60 had the following values by range: 0.1-0.49 g/kg = 0.139 g/kg +/- 0.035; 0.5-0.99 g/kg = 0.184 g/kg +/- 0.043; 1-1.49 g/kg = 0.213 g/kg +/- 0.052; 1.5-1.99 g/kg = 0.239 g/kg +/- 0.058; 2-2.49 g/kg = 0.265 g/kg +/- 0.073; 2.5-2.99 g/kg = 0.306 g/kg +/- 0.096. Differences in values of beta slope among consecutive intervals of delta(BAC) = 0.5 g/kg are significant (p<0.01). The elimination curve in the BAC interval 0.5-2.5 g/kg has a linear trend, while beta-slope (y)/BAC (x) correlation is given as beta60 = 0.15 g/kg + (0.05 g/kg x BAC). Retrograde calculation of the blood alcohol concentration in tempore criminis (BAC(tc)) based on the determined alcohol concentration in the blood specimen (BAC(t)) shows a statistically significant difference between BAC(tc) calculated using a standard zero-order model versus corrected methodology. The higher the BAC(t) and the longer the calculation time, the greater and statistically more significant (p<0.01) is the difference between the calculated values of BAC(tc).[Abstract] [Full Text] [Related] [New Search]