These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Class A plexin expression in axotomized rubrospinal and facial motoneurons.
    Author: Spinelli ED, McPhail LT, Oschipok LW, Teh J, Tetzlaff W.
    Journal: Neuroscience; 2007 Feb 23; 144(4):1266-77. PubMed ID: 17197097.
    Abstract:
    The semaphorin family of guidance molecules plays a role in many aspects of neural development, and more recently semaphorins have been implicated to contribute to the failure of injured CNS neurons to regenerate. While semaphorin expression patterns after neural injury are partially understood, little is known about the expression of their signal transducing transmembrane receptors, the plexins. Therefore, in this study, we compared the expression patterns of all class A plexins (Plxn-A1, A2, A3, A4) in mouse CNS (rubrospinal) and peripheral nervous system (PNS)-projecting (facial) motoneurons for up to two weeks following axonal injury. Using in situ hybridization, immunohistochemistry, and Western blot analysis, in rubrospinal neurons, Plxn-A1 mRNA and protein and Plxn-A4 expression did not change as a result of injury while Plxn-A2 mRNA increased and Plxn-A3 mRNA was undetectable. In facial motoneurons, Plxn-A1, -A3 and -A4 mRNA expression increased, Plxn-A2 mRNA decreased while Plxn-A1 protein expression did not change following injury. We demonstrate that with the exception of the absence of Plxn-A3 mRNA in rubrospinal neurons, both injured rubrospinal (CNS) and facial (PNS) neurons maintain expression of all plexin A family members tested. Hence, there are distinct expression patterns of the individual plexin-A family members suggesting that regenerating rubrospinal and facial motoneurons have a differential ability to transduce semaphorin signals.
    [Abstract] [Full Text] [Related] [New Search]