These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorylation of the protein phosphatase type 1 inhibitor protein CPI-17 by protein kinase C. Author: Walsh MP, Susnjar M, Deng J, Sutherland C, Kiss E, Wilson DP. Journal: Methods Mol Biol; 2007; 365():209-23. PubMed ID: 17200564. Abstract: CPI-17 is a cytosolic protein of 17 kDa that becomes a potent inhibitor of certain type 1 protein serine/threonine phosphatases, including smooth muscle myosin light-chain phosphatase (MLCP), when phosphorylated at Thr38. Several protein kinases are capable of phosphorylating CPI-17 at this site in vitro; however, in intact tissue, compelling evidence only exists for phosphorylation by protein kinase C (PKC). Agonist-induced activation of heterotrimeric G proteins of the Gq/11 family via seven-transmembrane domain-containing, G protein-coupled receptors results in phospholipase Cbeta-mediated hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG). IP3 triggers Ca2+ release from the sarcoplasmic reticulum. DAG and Ca2+ together activate classical isoforms of PKC, and DAG activates novel PKC isoforms without a requirement for Ca2+. Activated PKC phosphorylates CPI-17 at Thr38, enhancing its potency of inhibition of MLCP approx 1000-fold. The myosin light-chain kinase (MLCK):MLCP activity ratio is thereby increased at the prevailing cytosolic free-Ca2+ concentration ([Ca2+]i), resulting in an increase in phosphorylation of the 20-kDa light chains of myosin II (LC20) catalyzed by Ca2+- and calmodulin-dependent MLCK and contraction of the smooth muscle. Physiologically, this mechanism can account for some instances of Ca2+ sensitization of smooth muscle contraction (i.e., an increase in force in response to agonist stimulation without a change in [Ca2+]i).[Abstract] [Full Text] [Related] [New Search]