These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells.
    Author: Chen X, Deng C, Tang S, Zhang M.
    Journal: Biol Pharm Bull; 2007 Jan; 30(1):128-32. PubMed ID: 17202672.
    Abstract:
    Nanoscale hydroxyapatite (nano-HAP) has been reported to exhibit anti-cancer effect on several human cancers, but the molecular mechanism of which remains unclear. The aim of this study was to explore the mechanisms by investigating the effects of nano-HAP on human gastric cancer SGC-7901 cells. Our results showed that nano-HAP significantly reduced cell viability, and induced apoptosis in SGC-7901 cells characterized by hypodiploid DNA contents, morphological changes and DNA fragmentation. The increase in apoptosis was accompanied with the increased expression of Bax, a pro-apoptotic protein, and decreased expression of Bcl-2, an anti-apoptotic protein, the decrease of mitochondrial membrane potential and the release of cytochrome c from mitochondria into cytosol. Furthermore, the activation of caspases-3, and -9, but not activation of caspases-8 was induced by nano-HAP. Z-VAD-fmk, a universal caspase inhibitor, dose-dependently inhibited nano-HAP-induced apoptosis. This study demonstrates that nano-HAP inhibits the proliferation of SGC-7901 cells by inducing apoptosis, and the apoptotic pathway of nano-HAP-induced apoptosis is mediated through the mitochondrial-dependent and caspase-dependent pathway.
    [Abstract] [Full Text] [Related] [New Search]