These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bifunctional alkylating agent-induced p53 and nonclassical nuclear factor kappaB responses and cell death are altered by caffeic acid phenethyl ester: a potential role for antioxidant/electrophilic response-element signaling.
    Author: Minsavage GD, Dillman JF.
    Journal: J Pharmacol Exp Ther; 2007 Apr; 321(1):202-12. PubMed ID: 17204746.
    Abstract:
    Bifunctional alkylating agents (BFA) such as mechlorethamine (nitrogen mustard) and bis-(2-chloroethyl) sulfide (sulfur mustard; SM) covalently modify DNA and protein. The roles of nuclear factor kappaB (NF-kappaB) and p53, transcription factors involved in inflammatory and cell death signaling, were examined in normal human epidermal keratinocytes (NHEK) and immortalized HaCaT keratinocytes, a p53-mutated cell line, to delineate molecular mechanisms of action of BFA. NHEK and HaCaT cells exhibited classical NF-kappaB signaling as degradation of inhibitor protein of NF-kappaBalpha (IkappaBalpha) occurred within 5 min after exposure to tumor necrosis factor-alpha. However, exposure to BFA induced nonclassical NF-kappaB signaling as loss of IkappaBalpha was not observed until 2 or 6 h in NHEK or HaCaT cells, respectively. Exposure of an NF-kappaB reporter gene-expressing HaCaT cell line to 12.5, 50, or 100 muM SM activated the reporter gene within 9 h. Pretreatment with caffeic acid phenethyl ester (CAPE), a known inhibitor of NF-kappaB signaling, significantly decreased BFA-induced reporter gene activity. A 1.5-h pretreatment or 30-min postexposure treatment with CAPE prevented BFA-induced loss of membrane integrity by 24 h in HaCaT cells but not in NHEK. CAPE disrupted BFA-induced phosphorylation of p53 and p90 ribosomal S6 kinase (p90RSK) in both cell lines. CAPE also increased nuclear factor E2-related factor 2 and decreased aryl hydrocarbon receptor protein expression, both of which are involved in antioxidant/electrophilic response element (ARE/EpRE) signaling. Thus, disruption of p53/p90RSK-mediated NF-kappaB signaling and activation of ARE/EpRE pathways may be effective strategies to delineate mechanisms of action of BFA-induced inflammation and cell death signaling in immortalized versus normal skin systems.
    [Abstract] [Full Text] [Related] [New Search]