These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hot water flushing for immiscible displacement of a viscous NAPL.
    Author: O'Carroll DM, Sleep BE.
    Journal: J Contam Hydrol; 2007 May 14; 91(3-4):247-66. PubMed ID: 17207892.
    Abstract:
    Thermal remediation techniques, such as hot water flooding, are emerging technologies that have been proposed for the removal of nonaqueous phase liquids (NAPLs) from the subsurface. In this study a combined laboratory and modeling investigation was conducted to determine if hot water flooding techniques would improve NAPL mass removal compared to ambient temperature water flushing. Two experiments were conducted in a bench scale two-dimensional sandbox (55 cmx45 cmx1.3 cm) and NAPL saturations were quantified using a light transmission apparatus. In these immiscible displacement experiments the aqueous phase, at 22 degrees C and 50 degrees C, displaced a zone with initial NAPL saturations on the order of 85%. The interfacial tension and viscosity of the selected light NAPL, Voltesso 35, are strongly temperature-dependent. Experimental results suggest that hot water flooding reduced the size of the high NAPL saturation zone, in comparison to the cold water flood, and yielded greater NAPL mass recovery (75% NAPL removal vs. 64%). Hot water flooding did not, however, result in lower residual NAPL saturations. A numerical simulator was modified to include simultaneous flow of water and organic phases, energy transport, temperature and pressure. Model predictions of mass removal and NAPL saturation profiles compared well with observed behavior. A sensitivity analysis indicates that the utility of hot water flooding improves with the increasing temperature dependence of NAPL hydraulic properties.
    [Abstract] [Full Text] [Related] [New Search]