These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Progress in characterization of Langmuir monolayers by consideration of compressibility. Author: Vollhardt D, Fainerman VB. Journal: Adv Colloid Interface Sci; 2006 Nov 30; 127(2):83-97. PubMed ID: 17208192. Abstract: Over decades, information about the rheological properties of the condensed monolayer phases has been obtained by introduction of a two-dimensional compressibility which is defined on the basis of the surface pressure-molecular area (Pi-A) features of the monolayer. Since the last decade, fundamental progress was attained in the experimental determination of the main characteristics of Langmuir monolayers in microscopic and molecular scale. Already smallest changes in the molecular structure of the amphiphile can result in changes in the molecular arrangement in the monolayer and thus, in changes of the main characteristics of the monolayer such as, the surface pressure-area per molecule (Pi-A) isotherms, the shape and texture of the condensed phase domains and the two-dimensional lattice structure. As the classical equations of state allowed only characterisation of the fluid (gaseous, liquid-expanded) state, thermodynamically based equations of state, which consider also the aggregation of the monolayer material to the condensed phase, have been developed. The present review focuses particularly to amphiphilic monolayers, the Pi-A isotherms of which indicate the existence of two condensed phases. For this case, the experimental results of the differences in the structure features and phase properties are discussed. The generalisation of the equation of state for Langmuir monolayers developed for the case that one, two or more phase transitions in the monolayer take place, is in agreement with the experimental results that the two-dimensional compressibility of the condensed phases undergoes a jump at the phase transition, whereas the compressibility is proportional to the surface pressure within one of the condensed phases. An example is presented which explains the procedure of the theoretical analysis of Pi-A isotherms indicating the existence of two condensed phases. An element of the procedure is the application of the general principle that the behaviour of any thermodynamic system is determined by the stability condition. An interesting anisotropy of the compressibility is revealed by GIXD studies of the S-phase of octadecanol monolayers. However, similar studies performed close to the LS-S-phase transition would result in a thermodynamically impossible negative compressibility. Close to this phase transition, the compressibility cannot be determined from the positions of the maxima because the monolayer is in a disordered state attributed to elastic distortions by fluctuations with the structure of the new phase in the surrounding matrix without destroying the quasi-long-range positional order.[Abstract] [Full Text] [Related] [New Search]