These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TRPV5, the gateway to Ca2+ homeostasis. Author: Mensenkamp AR, Hoenderop JG, Bindels RJ. Journal: Handb Exp Pharmacol; 2007; (179):207-20. PubMed ID: 17217059. Abstract: Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal distal convoluted tubule. TRPV5 is unique within the family of transient receptor potential (TRP) channels due to its high Ca2+ selectivity. Ca2+ flux through TRPV5 is controlled in three ways. First, TRPV5 gene expression is regulated by calciotropic hormones such as vitamin D3 and parathyroid hormone. Second, Ca2+ transport through TRPV5 is controlled by modulating channel activity. Intracellular Ca2+, for example, regulates channel activity by feedback inhibition. Third, TRPV5 is controlled by mobilization of the channel through trafficking toward the plasma membrane. The newly identified anti-aging hormone Klotho regulates TRPV5 by cleaving off sugar residues from the extracellular domain of the protein, resulting in a prolonged expression of TRPV5 at the plasma membrane. Inactivation of TRPV5 in mice leads to severe hypercalciuria, which is compensated by increased intestinal Ca2+ absorption due to augmented vitamin D3 levels. Furthermore, TRPV5 deficiency in mice is associated with polyuria, urine acidification, and reduced bone thickness. Some pharmaceutical compounds, such as the immunosuppressant FK506, affect the Ca2+ balance by modulating TRPV5 gene expression. This underlines the importance of elucidating the role of TRPV5 in Ca(2+)-related disorders, thereby enhancing the possibilities for pharmacological intervention. This chapter describes a unique TRP channel and highlights its regulation and function in renal Ca2+ reabsorption and overall Ca2+ homeostasis.[Abstract] [Full Text] [Related] [New Search]