These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis.
    Author: Yoo HH, Kwon C, Lee MM, Chung IK.
    Journal: Plant J; 2007 Feb; 49(3):442-51. PubMed ID: 17217467.
    Abstract:
    Telomere homeostasis, a process that is essential for the maintenance of chromosome integrity, is regulated by telomerase and a collection of associated proteins. By mass spectrometry we have identified a new telomeric protein encoded by the AtWHY1 (Arabidopsis thaliana Whirly 1) gene in Arabidopsis. AtWHY1 specifically binds the single-stranded plant telomeric DNA sequences, but not double-stranded telomeric DNA. To gain insights into the function of AtWHY1 in telomere biogenesis, we have identified two Arabidopsis lines harboring T-DNA insertions in AtWHY1. These lines exhibit neither growth nor developmental defects. However, AtWHY1-deficient plants show a steady increase in the length of telomere tracts over generations. This telomere elongation is correlated with a significant increase in telomerase activity. On the contrary, transgenic plants expressing AtWHY1 show a decreased telomerase activity and shortened telomeres. The evidence presented here indicates that AtWHY1 is a new family of telomere end-binding proteins that plays a role in regulating telomere-length homeostasis in Arabidopsis.
    [Abstract] [Full Text] [Related] [New Search]