These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Author: Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C. Journal: FASEB J; 2007 Apr; 21(4):1117-25. PubMed ID: 17218540. Abstract: The blood-brain barrier (BBB) poses great difficulties for gene delivery to the brain. To circumvent the BBB, we investigated a novel brain-targeting gene vector based on the nanoscopic high-branching dendrimer, polyamidoamine (PAMAM), in vitro and in vivo. Transferrin (Tf) was selected as a brain-targeting ligand conjugated to PAMAM via bifunctional polyethyleneglycol (PEG), yielding PAMAM-PEG-Tf. UV and nuclear magnetic resonance (NMR) spectroscopy were used to evaluate the synthesis of vectors. The characteristics and biodistribution of gene vectors were evaluated by fluorescent microscopy, flow cytometry, and a radiolabeling method. The transfection efficiency of vector/DNA complexes in brain capillary endothelial cells (BCECs) was evaluated by fluorescent microscopy and determination of luciferase activity. The potency of vector/DNA complexes was evaluated by using frozen sections and measuring tissue luciferase activity in Balb/c mice after i.v. administration. UV and NMR results demonstrated the successful synthesis of PAMAM-PEG-Tf. This vector showed a concentration-dependent manner in cellular uptake study and a 2.25-fold brain uptake compared with PAMAM and PAMAM-PEG in vivo. Transfection efficiency of PAMAM-PEG-Tf/DNA complex was much higher than PAMAM/DNA and PAMAM-PEG/DNA complexes in BCECs. Results of tissue expression experiments indicated the widespread expression of an exogenous gene in mouse brain after i.v. administration. With a PAMAM/DNA weight ratio of 10:1, the brain gene expression of the PAMAM-PEG-Tf/DNA complex was approximately 2-fold higher than that of the PAMAM/DNA and PAMAM-PEG/DNA complexes. These results suggested that PAMAM-PEG-Tf can be exploited as a potential nonviral gene vector targeting to brain via noninvasive administration.[Abstract] [Full Text] [Related] [New Search]