These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia. Author: Richards JG, Wang YS, Brauner CJ, Gonzalez RJ, Patrick ML, Schulte PM, Choppari-Gomes AR, Almeida-Val VM, Val AL. Journal: J Comp Physiol B; 2007 Apr; 177(3):361-74. PubMed ID: 17219139. Abstract: We examined the metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to 20 h exposure to severe hypoxia (0.37 +/- 0.19 mg O(2)/l; 4.6% air saturation) or 8 h severe hypoxia followed by 12 h recovery in normoxic water. During 20 h exposure to hypoxia, white muscle [ATP] was maintained at normoxic levels primarily through a 20% decrease in [creatine phosphate] (CrP) and an activation of glycolysis yielding lactate accumulation. Muscle lactate accumulation maintained cytoplasmic redox state ([NAD(+)]/[NADH]) and was associated with an inactivation of the mitochondrial enzyme pyruvate dehydrogenase (PDH). The inactivation of PDH was not associated with significant changes in cytoplasmic allosteric modulators ([ADP(free)], redox state, or [pyruvate]). Hypoxia exposure caused an approximately 65% decrease in gill Na(+)/K(+) ATPase activity, which was not matched by changes in Na(+)/K(+) ATPase alpha-subunit protein abundance indicating post-translational modification of Na(+)/K(+) ATPase was responsible for the decrease in activity. Despite decreases in gill Na(+)/K(+) ATPase activity, plasma [Na(+)] increased, but this increase was possibly due to a significant hemoconcentration and fluid shift out of the extracellular space. Hypoxia caused an increase in Na(+)/K(+) ATPase alpha-subunit mRNA abundance pointing to either reduced mRNA degradation during exposure to hypoxia or enhanced expression of Na(+)/K(+) ATPase alpha-subunit relative to other genes.[Abstract] [Full Text] [Related] [New Search]