These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: RRM2 induces NF-kappaB-dependent MMP-9 activation and enhances cellular invasiveness. Author: Duxbury MS, Whang EE. Journal: Biochem Biophys Res Commun; 2007 Mar 02; 354(1):190-6. PubMed ID: 17222798. Abstract: Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-kappaB (NF-kappaB) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-kappaB-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-kappaB activity. NF-kappaB is a key mediator of the invasive phenotypic changes induced by RRM2 overexpression.[Abstract] [Full Text] [Related] [New Search]