These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Heat-induced dimerization of BCL-xL through alpha-helix swapping.
    Author: Denisov AY, Sprules T, Fraser J, Kozlov G, Gehring K.
    Journal: Biochemistry; 2007 Jan 23; 46(3):734-40. PubMed ID: 17223694.
    Abstract:
    The dimerization of anti-apoptotic BCL-xL by three-dimensional domain swapping has recently been discovered at alkaline pH; however, the high energetic barrier between the dimer and monomer forms of BCL-xL prevents them from interconverting at room temperature and neutral pH. Here, we demonstrate that BCL-xL dimers can be easily prepared by heating concentrated protein above 50 degrees C. The 38 kDa BCL-xL dimer was fully characterized by multi-resonance nuclear magnetic resonance (NMR) spectroscopy, and the mechanism of dimerization by alpha-helix swapping was confirmed. Dimerization strongly affects the NMR signals from the turn between helices alpha5 and alpha6 of BCL-xL and a portion of the long loop between helices alpha1 and alpha2. Measurements of residual dipolar couplings demonstrate that the solution structure of the BCL-xL dimer is very close to the crystal structure. Dimer formation does not prevent tight binding of ligands to the hydrophobic cleft of BCL-xL; however, binding of a BID BH3-peptide or a polyphenol drug, gossypol, to BCL-xL significantly slowed monomer-dimer interconversion and is an example of the control of BCL protein oligomerization by ligand binding.
    [Abstract] [Full Text] [Related] [New Search]