These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prevention of 7-ketocholesterol-induced mitochondrial damage and cell death by calmodulin inhibition. Author: Han JH, Kim YJ, Han ES, Lee CS. Journal: Brain Res; 2007 Mar 16; 1137(1):11-9. PubMed ID: 17224136. Abstract: Oxysterols such as 7-ketocholesterol and 25-hydroxycholesterol formed under enhanced oxidative stress in the brain are suggested to induce neuronal cell death. The present study investigated the effect of calmodulin antagonists (trifluoperazine, W-7 and calmidazolium) against the cytotoxicity of 7-ketocholesterol in relation to the mitochondria-mediated cell death process and oxidative stress. PC12 cells exposed to 7-ketocholesterol revealed nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species and depletion of GSH. N-Acetylcysteine, trolox, carboxy-PTIO and Mn-TBAP reduced the cytotoxic effect of 7-ketocholesterol. Calmodulin antagonists attenuated the 7-ketocholesterol-induced nuclear damage, formation of the mitochondrial permeability transition and cell viability loss in PC12 cells. The results suggest that calmodulin antagonists may prevent the 7-ketocholesterol-induced viability loss in PC12 cells by suppressing formation of the mitochondrial permeability transition, leading to the release of cytochrome c and subsequent activation of caspase-3. The effects seem to be ascribed to their depressant action on the formation of reactive oxygen species and depletion of GSH. The findings suggest that calmodulin inhibition may exhibit a protective effect against the neurotoxicity of 7-ketocholesterol.[Abstract] [Full Text] [Related] [New Search]