These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 2-methoxyestradiol induces spindle aberrations, chromosome congression failure, and nondisjunction in mouse oocytes.
    Author: Eichenlaub-Ritter U, Winterscheidt U, Vogt E, Shen Y, Tinneberg HR, Sorensen R.
    Journal: Biol Reprod; 2007 May; 76(5):784-93. PubMed ID: 17229934.
    Abstract:
    2-Methoxyestradiol (2-ME) is a metabolite of 17beta-estradiol and a natural component of follicular fluid. Local concentrations of 2-ME may be increased by exposure to environmental pollutants that activate the expression of enzymes in the metabolic pathway from 17beta-estradiol to 2-ME. It has been suspected that this may have adverse effects on spindle formation in maturing oocytes, which would affect embryo quality. To study the dose-response patterns, we exposed denuded mouse oocytes to 2-ME during in vitro maturation. Meiotic progression, spindle morphology, centrosome integrity, and chromosome congression were examined by immunofluorescence and noninvasive polarizing microscopy (PolScope). Chromosomal constituents were assessed after spreading and C-banding. 2-ME sustained MAD2L1 expression at the centromeres and increased the number of meiosis I-blocked oocytes in a dose-dependent manner. 2-ME also caused dramatic dose-dependent increases in the hyperploidy of metaphase II oocytes. Some of these meiosis II oocytes contained anaphase I-like chromosomes, which suggests that high concentrations of the catecholestradiol interfere with the physical separation of chromosomes. Noninvasive PolScope analysis and tubulin immunofluorescence revealed that perturbations in spindle organization, which resulted in severe disturbances of the chromosome alignment at the spindle equator (congression failure), were caused by 2-ME at meiosis I and II. Pericentrin-positive centrosomes failed to align at the spindle poles, and multipolar spindles and prominent arrays of cytoplasmic microtubule asters were induced in 2-ME-exposed metaphase II oocytes. In conclusion, a micromolar level of 2-ME is aneugenic for mammalian oocytes. Therefore, exposure to 2-ME and conditions that increase the intrinsic local concentration of 2-ME in the ovary may affect fertility and increase risks for chromosomal aberrations in the oocyte and embryo.
    [Abstract] [Full Text] [Related] [New Search]