These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacokinetics of fexofenadine enantiomers in healthy subjects. Author: Miura M, Uno T, Tateishi T, Suzuki T. Journal: Chirality; 2007 Mar; 19(3):223-7. PubMed ID: 17230498. Abstract: Fexofenadine, a substrate of P-glycoprotein and an organic anion transporter polypeptide, is commonly used to assess P-glycoprotein activity in vivo. The purpose of this study was to elucidate the pharmacokinetics of each fexofenadine enantiomer. After a single oral dose of racemic fexofenadine (60 mg), the plasma and urine concentrations of fexofenadine enantiomers were measured over the course of 24 h in six healthy subjects. The mean plasma concentration of R(+)-fexofenadine was higher than that of S(-)-fexofenadine. The area under the plasma concentration-time curve (AUC(0-infinity)) and the maximum plasma concentration (C(max)) of R(+)-fexofenadine were significantly greater than those of the S(-)-enantiomer (P = 0.0018 and 0.0028, respectively). The R/S ratios of AUC and C(max) of fexofenadine were 1.75 and 1.63, respectively. The oral clearance and renal clearance of S(-)-fexofenadine were significantly greater than that of R(+)-fexofenadine (P = 0.0074 and 0.0036). On the other hand, the stereoselective metabolism of fexofenadine using recombinant CYP3A4 was investigated; however, fexofenadine enantiomers were not metabolized by CYP3A4. Fexofenadine is transported by both P-glycoprotein and OATP and is not metabolized by intestinal CYP3A. Our findings suggest that the affinity of P-glycoprotein for S(-)-fexofenadine is greater than its affinity for the R(+)-enantiomer. Thus, P-glycoprotein is likely to have chiral discriminatory abilities.[Abstract] [Full Text] [Related] [New Search]