These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High affinity receptors to acidic and basic fibroblast growth factor (FGF) are detected mainly in adult brain membrane preparations but not in liver, kidney, intestine, lung or stomach. Author: Ledoux D, Mereau A, Pieri I, Barritault D, Courty J. Journal: Growth Factors; 1991; 5(3):221-31. PubMed ID: 1723286. Abstract: We have previously shown that only adult brain contained a detectable amount of high affinity receptors for basic Fibroblast growth factor (bFGF) whereas adult liver, kidney, lung, intestine or stomach showed only low affinity binding sites. We now have studied and compared the distribution of the receptors for acidic Fibroblast growth factor (aFGF) with that of bFGF receptors in the same tissues. Membrane binding of 125I-aFGF was time dependent, reversible and displaced by an excess of unlabeled aFGF. Scatchard analyses of binding data obtained with all tissue membrane preparations revealed the presence of at least one class of low affinity/high capacity interaction sites characterized by apparent Kd values ranging from 3.9 to 6.9 x 10(-8) M. Interestingly and as for bFGF, high affinity receptors for aFGF could be detected only in adult brain membranes. Cross-linking and Scatchard analyses indicate that this family of interaction was characterized by four molecular species of 175, 125, 95 and 70 kDa and by an apparent Kd value of 1.8 x 10(-10) M. Moreover, cross-competition binding assay revealed that these brain high affinity receptors were common for both acidic and basic FGF. These results suggest that these growth factors may share identical functions mediated by the same receptors highly expressed in the brain. Using a cDNA probe for the Bek form of FGF receptors, we were able to show that all the tissues studied expressed this mRNA (4.5 kb transcript) but probably not in sufficient amounts to account for the number of high affinity receptors that we detected only in the brain.[Abstract] [Full Text] [Related] [New Search]